lunes, 10 de febrero de 2014

TEOREMA DE TRIÁNGULOS CONGRUENTES

Se dice que un Δ ABC es congruente con otro Δ DEF si sus lados respectivos son iguales y sus ángulos respectivos también lo son.
Para expresar en lenguaje matemático que los dos triángulos de la izquierda son congruentes, se usa la siguiente simbología:


         

Al observar los triángulos de la figura puede apreciarse que tienen lados respectivamentecongruentes.

También tienen ángulos respectivamente congruentes
 Entonces es posible afirmar que .
Al revés: si dos o más triángulos son congruentes, sus lados y ángulos lo serán respectivamente, en el orden de las letras asignadas a sus vértices para nombrarlos, salvo que gráficamente se indique otra correspondencia.

Criterios de congruencia

Los criterios de congruencia corresponden a los postulados y teoremas que enuncian cuáles son las condiciones mínimas que deben reunir dos o más triángulos para que sean congruentes. 
Estas son:
1.- Congruencia de sus lados
2.- Congruencia de sus ángulos
Para que dos triángulos sean congruentes, es suficiente que sólo algunos lados y/o ángulos sean iguales.

Los postulados o criterios básicos de congruencia de triángulos son:

Postulado LAL
LAL significa lado-ángulo-lado.
Dos triángulos son congruentes si tienen dos lados y el ángulo determinado por ellos respectivamente iguales.

Postulado ALA
ALA significa ángulo-lado-ángulo.
Dos triángulos son congruentes si tienen dos ángulos y el lado común a ellos, respectivamente, iguales.

Postulado LLA
LLA significa lado-lado-ángulo
Dos triángulos son congruentes si tienen respectivamente iguales dos lados y el ángulo opuesto al mayor de ellos.

Postulado LLL

LLL significa lado-lado-lado.
Dos triángulos son congruentes si tienen sus tres lados respectivamente iguales.



No hay comentarios:

Publicar un comentario